
© Indium Software

A Whitepaper

Canarying Releases to Mitigate
Real World Errors

01

Downtime. Bugs. Angry users. Do these words ring a bell? You may want to
reconsider your release management process if this is the case. In the
fast-paced, ever-changing world of business IT, you can't afford to offer
half-baked products. Nonetheless, 75% of issues are caused by changes in
software or its environment.

To thrive, organizations must maintain effective agility to accommodate diverse
consumer demands. This requires continuous software evolution throughout its
lifecycle to stay current with the ever-changing market demands. That's where
"Software Releases" come to play!

Software releases refer to updates to a software product or service. Different
releases exist based on their purpose, scope, and user impact. These include
patch releases, minor releases, major releases, feature releases, and beta
releases. The frequency and combination of releases depend on an
organization's software development and release lifecycle. Let's explore these:

© Indium Software

Phase 1 - Project Initiation: In this phase, the project team is formed, the
project scope is defined, initial requirements are gathered, and feasibility
analysis is conducted.

Phase 2 - Requirement/Planning: During this phase, detailed requirement
gathering, analysis, and documentation take place. A plan for project execution
is developed, including timelines, resource allocation, and risk management.

The Software Development Lifecycle (SDLC) consists of
six phases:

Introduction To Software
Releases

02

Having non-functional software can tarnish an organization's reputation and
disappoint customers. Despite employing numerous testing strategies to
ensure error-free software, achieving 100% accuracy is often impractical for
various reasons, including:

Phase 3 - Design: In this phase, the software design is finalized, including
architecture, interface design, and database design.

Phase 4 - Development: During this phase, the software is actually coded and
developed using various technologies and programming languages.

Phase 5 - Testing: In this phase, quality assurance of the software is ensured
through various testing strategies, including black box testing, white box testing,
cross-testing, and regression testing.

Phase 6 - Release: Finally, the software is deployed to end-users or customers
after ensuring its quality and functionality through various testing methods.

© Indium Software

Bugs and errors: Despite thorough
testing, the software may have bugs
and errors that have gone unnoticed
or emerged post-release, affecting
the user experience.

Compatibility issues: The software
may not be compatible with certain
hardware or operating systems,
causing issues for some users.

Security vulnerabilities: Hackers
may exploit vulnerabilities in the
software, compromising data and
security.

Scalability: As user demands grow,
the software may face challenges in
scaling to meet the increased load,
leading to slow performance or
downtime.

Customer support: Post-release, the
support team may have to address
user queries and issues, which can
be time-consuming and
resource-intensive.

Challenges

Regulatory compliance: Software may have to comply with regulations and
industry standards, which may require updates and modifications post-release.

The best strategy to mitigate the risks is with "Canary Testing."

Canary Release = Canary
Deployment

03

Canary testing is a method of
testing new software features and
functionality in production but with
minimal user impact.

Instead of deploying the new release
to all users at once, canary testing
allows you to gradually roll out the
update to a small group of users,
also known as "canaries."

By monitoring the canaries'
experiences, you can quickly identify
any issues or bugs that may have
been missed during testing.

Canary testing is also known as
canary deployment or canary
release.These terms are often used
interchangeably, but they all refer to
the same process of testing new
software updates before deploying
them to all users.

© Indium Software

Service 1 Service 2

Service 1 Service 2

Router

Users

Canary
Users

Application v-1.0

Canary Analysis

Engineers

95% User
Traffic

5% User
Traffic

Application v-1.1

04© Indium Software

How to Perform a Canary
Test? Planning and
Implementing of Canary
Test Deployment

Step 1: Select the Canary Users
Choose a small group of users, around 5-10% of the total user base.
These users should be less impactful to the business and unaware that
they are part of the testing group.

Step 2: Setup and Rollout Canary Test Environment
Set up the canary test environment with the new version of the software
alongside the existing version of the software. Configure a router to route
traffic between both environments and start the routing.

Step 3: Determine Evaluation Criteria and Time Frame
Set the evaluation criteria and the toolchains required to monitor the
metrics. Decide on a time frame for the testers to analyze the metrics
and conclude about the release's stability.

Step 4: Analyze the Release
Monitor and analyze the release for the decided time frame to see if it
meets the evaluation criteria.

Step 5: Make a Decision
If the release meets the evaluation criteria, it can be rolled out to a larger
set of users. If not, necessary bug fixes should be made before executing
the major release to the larger group.

05

Mobile Testing: Although Canary
Testing works wonders for web
applications, it becomes a limitation
for mobile applications since there
is only one environment, the user's
device, making it challenging to
implement Canary testing.

Complex Manual Testing: When we
release multiple features, testing
them using multiple environments
can become difficult and
cumbersome. Upgrading and
analyzing multiple environments
manually can also add to the
complexity of the entire process.

Bad User Experience: Some users
may not want to be used as test
subjects, resulting in a bad user
experience. To be transparent, you
can inform users that they are being
used as "canaries" through an "early
adoption" program or something
similar.

© Indium Software

Complexities with
Canary Testing

Like any other approach, Canary Testing has a few challenges. Here are
some of the significant challenges of Canary Testing:

Select Canary
Users

Setup Canary
Test Environment

Select Evaluation
Criteria

Canary
Analysis

Large Userbase
Rollout Fix Bugs

Step 1 Step 2 Step 3 Step 4

Step 5 Step 5

Pass Fail

06© Indium Software

Feature Flags for Mobile Apps and Large Features

Using a feature flag-based approach can help overcome the
limitations of a single environment for mobile apps and the need for
multiple environments for larger releases.

Feature flags provide a controlled way to turn on changes or new
features for specific subsets of your audience, as well as maintain
operational toggles. They offer precise ad-hoc targeting around any
dimension you want, allowing for more targeted testing and feedback.

Enabling feature flags in the application can facilitate the execution of
a canary test for a production release using a single production
instance. It simplifies the process by toggling on or off a specific
feature.

Automation Tests and Analysis Tool Chain for
Effective Canary Testing

Since canary testing involves at least two or more instances of the
application, automating the entire process as much as possible is a
wise choice. Automation testing tools make creating new tests easier,
identifying test users, and analyzing test results. Engineering teams
can also create predefined test cases to perform targeted testing and
back up the test results.

A comprehensive analytics platform can analyze different dimensions
like errors, logs, performance metrics, and transactions, giving testers
a holistic view of the application's performance. This helps to decide
whether the release is stable or not.

Overcoming Complexities
of Canary Testing

With canary testing, real-world
users can evaluate and analyze
two software versions. Since the
users are just a subset of total
users, a release's impact would
be much less.

Adopting a feature flag-based
approach can help minimize the
cost of having two production
environments.

Canary deployment can also be
used for A/B testing, as it offers
two alternatives to the users and
selects one with better stability.

Since the newer version runs in
parallel with the old version,
rolling back would be
straightforward.

Since users for the canary testing
are decided by us, we can select
the users in such a way that we
get the right feedback for the
features.

Client: Our client is the leading HR service provider in the US region.

Objective: To implement a canary release with a combination of feature flags to
roll out a major change in the Tax Computation feature in the Compensation
Module from version 1.0 to version 1.1 of the HRMS application.

Challenges: The introduction of new tax exemption sections in version 1.1
requires a change in declaring investments and affects the tax computation in the
backend, potentially impacting the net salary of employees.

Benefits

Case & Point

07© Indium Software

Implementing Canary Release with Feature Flags for a
Tax Computation Feature Update in HRMS SaaS Application

Any bug in the application would lead to their salaries being computed
incorrectly, and for customers with a large employee base, this would create
an adverse impact.

Solution: After analyzing what they are facing regarding this new version
change and how it will affect their entire user base since this is a change in
the application that our client is selling to their customers. We proposed a
strategic canary plan with a team of experts that our client adopted to
follow and execute a canary release:

08© Indium Software

Our client selected trial customers as canary users, who may have a fallback
mechanism and fewer employees on-boarded.

Step 1: Select Canary Users

Feature flags were enabled for the compensation module, and the canary
feature was enabled for the selected canary users through the admin
console. An Event Management System was set up for parameters 1 and 2,
and an infra monitoring system was set up for parameters 3 and 4 to obtain
the statistics.

Step 3: Set up and Roll out Canary Test Environment

The following parameters were determined for the evaluation criteria:

The time frame to monitor the release was set at 24 hours post-release.

Step 2: Determine Evaluation Criteria and Time Frame

Transaction failures due to technical errors should be less than 2%

Transaction failures due to logical errors should be less than 2%

Average response time of API calls in the computation module should
be less than 2 sec

50x errors in the API/Web Applications should be less than < 1%

09© Indium Software

Since the SLO for the parameters was met, the engineering team concluded
that the release was stable and enabled the feature for all customers.

Outcome: The canary release with feature flags helped ABC successfully roll
out the tax computation feature update without major issues, ensuring
minimal disruption to customers.

Step 5: Decision Making

A successful release is crucial for ensuring a positive user experience, which
is essential for organizations to achieve customer satisfaction and success
in the market. Implementing a reliable release process that minimizes the
impact of bugs during large rollouts is crucial in achieving this.

While various release strategies are available, such as Blue Green Release
and A/B Testing, Canary Testing is a widely used strategy that can effectively
help organizations achieve their goals. Ultimately, the choice of strategy will
depend on the specific needs of each organization, as the goal is to ensure a
successful release.

Point of View

The engineering team monitored the dashboard setup for the parameters
and checked if any thresholds were crossed.

Step 4: Analyze the Release

Transaction failures because of technical errors were less than 2% 1.0%

Transaction failures because of logical errors were less than 2% 1.2%

The average response time of API calls in the computation module was
less than 2 sec 0.8 sec

50x errors in the API/Web Applications was less than 1% 0.5%

1

sales@indiumsoftware.com
For Sales Inquiries

info@indiumsoftware.com
For General Inquiries

www.indiumsoftware.com

USA

Cupertino | Princeton
Toll-free: +1-888-207-5969

INDIA

Chennai | Bengaluru | Mumbai | Hyderabad
Toll-free: 1800-123-1191

SINGAPOREUK

Singapore
Ph: +65 6812 7888

London
Ph: +44 1420 300014

https://www.facebook.com/indiumsoftware/
https://twitter.com/IndiumSoftware
https://www.linkedin.com/company/indiumsoftware/

