
© Indium Software

A Whitepaper

Unlocking High-Performance
Potential: Exploring Concurrency
Patterns in Node.js

01© Indium Software

Node.js is a powerful JavaScript runtime environment widely used for building
scalable and high-performance web applications. However, it is a
single-threaded platform, which means it can handle only one task at a time,
limiting its ability to leverage the power of modern multi-core processors. To
overcome this limitation, developers can use various concurrency patterns and
techniques to enable the parallel execution of multiple tasks.

Key statistics highlighting the popularity and robustness of node.js technology

This whitepaper explores some of Node.js's most useful concurrency patterns,
such as the JavaScript Event Loop, Callbacks, Async-Await, and Reactive
Programming with RxJS. Developers can fully utilise the capabilities of Node.js
and create high-performance applications that can easily scale and handle
heavy workloads by understanding these patterns and techniques.

Node.js holds the first place in the most popular web frameworks and
technologies in the 2022 Stack Overflow survey.

Typical response time for identical pages at PayPal decreased by 35%
when Java was replaced with Node.js, making it a robust back-end
JavaScript framework capable of cutting loading times to 50-60%.

Node.js is mostly used for creating web apps, according to 85% of
developers, and 43% of Node.js developers use it to create enterprise
applications.

Node.js is reportedly used by 1.4% to 2.2% of all websites worldwide,
indicating that around 30 million websites use it.

Node.js has over 93k+ stars on GitHub, 25.2k+ forks, and 3182+
contributors as of January 2023.

Svelte has recorded 390-400k weekly downloads on NPM as of
January 2023.

Executive Summary

02© Indium Software

Concurrency is the ability of a programme to perform multiple tasks
simultaneously. Node.js is excellent at managing multiple asynchronous I/O
operations, as you may have already heard. But wait, how exactly does Node.js
handle this? It’s single-threaded, isn’t it? What about I/O-less operations?

Built on Chrome’s V8 Engine, Node.js is an open-source, cross-platform runtime
environment. There are two main reasons why/how node.js can handle various
concurrent requests easily and why/how it becomes a noticeable choice for the
development of highly scalable and server-side applications.

Node.js uses a single-threaded event loop architecture and it works
asynchronously.

How should concurrency be handled if
Node.js is single threaded?

As you can see, asynchronous I/O
operations are handled by Node
well. When one is aware that it only
requires one thread, it might not be
entirely unexpected. A thread
represents one operation at a time,
right? Yes and no, I suppose.

Another question that arises from
this is, "How does Node know when
it's time to handle multi-threaded
operations?". You'll probably concur
that it's not impressive. So, let's
introduce the Event Loop., who will
assist Node in managing this mess.

But... how?

Let’s briefly explain what the Event Loop is and how it works. Previously, I’ve
hinted that you need a kind of “manager” to be able to handle asynchronous
operations. Let’s take a deep dive into the Event Loop.

JavaScript Event Loop

03© Indium Software

Event Queue Thread Pool

Operation completed

Event
Loop

Node Server

Requests

Data Base

File System

Networks

Others

The veneer between requests and
the event loop is called "Event
Queue". The event queue stores the
incoming requests in the order that
it received them (in queue). The
Event loop selects a request from
the queue, sends it to the internal
C++ threads for processing, makes
itself available for subsequent
requests, and then begins
processing those as well.

The event loop is the skeleton in the
closets that allows JavaScript to
appear to be multithreaded even
though it is only single-threaded. The
responses to the tasks that were
earlier sent to the internal C++
threads for processing are then sent
to the client using the JavaScript
concept of callback functions.

Example:
function sample() {
console.log("sample number 1");
setTimeout(function () {
console.log("sample number 2");
}, 1500);
console.log("sample number 3");
}
console.log("sample number 4");
sample();

Output

sample number 4
sample number 1
sample number 3
sample number 2

04© Indium Software

Given that it is lined up even before
the function call in this case,
"sample number 4" will be executed
first. The function will then be
invoked. The application will then
print "sample number 1" and enter
timeout for 1.5 seconds (1500 ms).

The application will no longer stop
processing new requests after 1.5
seconds; instead, it will handle the
subsequent request and print
"sample number 3." The lines will
now be executed after the timeout
expires, and "sample number 2" will
be printed to the console.

Answering subsequent requests
ensures that the event loop is never
occupied or blocked by one. As a
result, Node.js can handle multiple
user requests concurrently better
than traditional web servers. that is,
Concurrency.

Asynchronous JavaScript allows for
the execution of multiple tasks
simultaneously, which results in the
async callback.

When calling a function that begins
running code in the background,
callback functions are passed as
arguments. The callback function is
invoked by the background code
when it is finished to notify you that
the task has been finished. The
purpose of a callback is to run code
in response to an event.

You can programme your application
to "execute a piece of code every
time when the event is triggered" by
using a callback.

Callback Explained

05© Indium Software

Example: To execute this code every time the user needs to click
 a key on the keyboard

const button =
document.getElementById('button');
function callback(){
console.log("I am a Button");
}

button.addEventListener('click', callback);

Explanation:
In the above code, we could see
addEventListener as a function and
we are passing callback as an
argument. And when the button is
clicked (an event is triggered) the
addEventListener registers as the
callback function.

Functions that use callbacks take
some time to produce a result rather
than returning something right away
like most functions do.

The term "asynchronous," also
known as "async," simply means
"takes some time" or "be it in the
future, not now." Callbacks are
typically only used for I/O tasks,
such as downloading, reading files,
interacting with databases, etc.

Here, the word mentioned appears
only once, just like in the example
above. But in real-time application,
we fail to anticipate this. Instead, a
callback hell situation arises when
several asynchronous functions are
chained together.

06© Indium Software

How can we fix a callback hell situation?

Finite and nested callbacks can be handled in a variety of ways. It may
involve the async await framework, the promise-based approach from the
past, the division of the code into separate functions, the use of generators,
or the RxJS library.

Example: To create a promise on receiving user data

Using Promise

For each callback, we create a new promise, converting them to promises.
If the callback is successful, we could fulfil the promise; if it is
unsuccessful, we would reject the promise.

You can now create a new function and use it as a callback for the
function.

function getPromise {
const newUser = getUser(user);
return new Promise((resolve, reject) => {
if (user)
resolve(user)

} else {
reject(new Error('We don’t have a new user!'))

}
})

}

The use of await allows us to write asynchronous functions as though they
were synchronous and executed sequentially because it halts execution until
the promise is fulfilled, or until the execution of the function is successful.

Using Async-Await

07© Indium Software

Example: To fetch and update the user profile

Example: To yield an output sequentially.

Using Generators

Let's start with the word "sequential" then. You should feel most
comfortable with this section. It's yet another way of describing
single-threaded behaviour and the code that ES6 generators produce that
appears to be in sync.

const userProfile = async () => {

// argument indicated number of users to fetch
const user = await fetchUsers(1)
const updatedAddress = await updateAddress(user);
const phonenumber = await getPhonenumber ();
const updateUser = await updateUser(user, updatedAdress,

phonenumber);
return user;

}s

// fetch and update user profile
userProfile()

function *main() {
var x = yield 100;
var y = yield 3;
var z = yield (y * 5);

}

OUTPUT:

10
3
15

The goal of reactive programming is
to develop applications that are
responsive and event-driven, and
which push an observable event
stream to subscribers so that they
can watch for and respond to the
events. RxJS is a library that allows
users to create event-based and
asynchronous programmes using
observables and operators.

Async data streams can be staged
using Observables, queried using
Operators, and their concurrency can
be adjusted using Schedulers.
Simply put, Rx = Observables +
Operators + Schedulers.

Using RxJS/ Reactive
Programming

We need to observe data, so there
must be a data producer. This
producer could be a server sending
data over HTTP or a user-entry field.
An observable is a client-side
function or object that receives data
from the producer and pushes it to
the subscriber (s).

An observer is a thing or a function
that manages the information that
the observable pushes. I think the
illustration below would explain
much better.

Getting familiar with
RxJS terminology

08

It is done sequentially, one at a time, to implement each of those
statements. The yield keyword, which annotates where a blocking pause
(blocking only in the sense of the generator code itself, not the
surrounding programme!), may occur, has no effect on the top-down
handling of the code inside *main (). It must be easy to comprehend, I
suppose.

© Indium Software

Example: To subscribe to an observable Event.

09© Indium Software

Observer

Observer

Observer

Data Provider Observables

Push

Push

Push

Players of RxJS
Observable – data stream pushes data over time

Observer – consumer of a stream of observable data

Subscriber – connect between observer and observable

Operator – function for the proceeding data transformation

Let’s create an observable that will emit 10, 20, and 30 and subscribe
to this observable:

Rx.Observable.of(10,20,30)
. subscribe(

value => console.log(value),
err => console.error(err),
() => console.log ("End of streaming")

);

OUTPUT:
10
20
30
End of streaming.

10© Indium Software

As Node.js continues gaining
popularity as a platform for building
high-performance applications,
developers must understand and
utilize various concurrency patterns
and techniques to unlock their full
potential.

In this whitepaper, we have explored
some of the most effective
concurrency patterns in Node.js,
including the JavaScript Event Loop,
Callbacks, Async-Await, and
Reactive Programming with RxJS.

Looking forward, the future of
Node.js development lies in utilizing
these concurrency patterns and
techniques to enable efficient
parallel execution of multiple tasks,
leveraging the power of modern
hardware capabilities.

Additionally, with the increasing
adoption of microservices
architecture and serverless
computing, Node.js is poised to
become even more critical in
building scalable and resilient
applications.

In conclusion, developers must
continue to learn and evolve with the
advancements in Node.js and utilize
the best practices to build
high-performance applications that
can handle the ever-increasing
demands of modern software
development.

By following the roadmap of utilizing
concurrency patterns and
techniques, Node.js can continue to
be a reliable and robust platform for
building the next generation of web
applications.

Conclusion

11© Indium Software

Author

Divya is a senior developer with more than 5+ years of extensive
experience in both front-end and back-end technologies. She has
managed complex projects and added value to businesses by offering
knowledgeable solutions and delivering outcomes that promote
business growth and success. She is a highly skilled MERN stack
developer. She enjoys researching and writing about the newest and
most cutting-edge technologies in her spare time.

Divya Devi Mohan

1

sales@indiumsoftware.com
For Sales Inquiries

info@indiumsoftware.com
For General Inquiries

www.indiumsoftware.com

USA

Cupertino | Princeton
Toll-free: +1-888-207-5969

INDIA

Chennai | Bengaluru | Mumbai | Hyderabad
Toll-free: 1800-123-1191

SINGAPOREUK

Singapore
Ph: +65 6812 7888

London
Ph: +44 1420 300014

 ABOUT INDIUM
Indium is a Digital Engineering Services leader and Full Spectrum Integrator that helps customers
embrace and navigate the Cloud-native world with Certainty. With deep expertise across Applications,
Data & Analytics, AI, DevOps, Security and Digital Assurance we “Make technology work” and accelerate

business value, while adding scale and velocity to customer’s digital journey on AWS.

https://www.facebook.com/indiumsoftware/
https://twitter.com/IndiumSoftware
https://www.linkedin.com/company/indiumsoftware/

